Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure
نویسندگان
چکیده
It is decidable if a set of numbers, whose representation in a base b is a regular language, is ultimately periodic. This was established by Honkala in 1986. We give here a structural description of minimal automata that accept an ultimately periodic set of numbers. We then show that it can be verified in linear time if a given minimal automaton meets this description. This yields a O(n log(n)) procedure for deciding whether a general deterministic automaton accepts an ultimately periodic set of numbers.
منابع مشابه
An efficient algorithm to decide periodicity of b-recognisable sets using LSDF convention
Given an integer base b > 1, a set of integers is represented in base b by a language over {0, 1, ..., b − 1}. The set is said to be b-recognisable if its representation is a regular language. It is known that ultimately periodic sets are b-recognisable in every base b, and Cobham’s theorem implies the converse: no other set is b-recognisable in every base b. We are interested in deciding wheth...
متن کاملAn Efficient Algorithm to Decide Periodicity of b-Recognisable Sets Using MSDF Convention
Given an integer base b > 1, a set of integers is represented in base b by a language over {0, 1, ..., b− 1}. The set is said to be b-recognisable if its representation is a regular language. It is known that eventually periodic sets are b-recognisable in every base b, and Cobham’s theorem implies the converse: no other set is b-recognisable in every base b. We are interested in deciding whethe...
متن کاملThe fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملGlobal existence, stability results and compact invariant sets for a quasilinear nonlocal wave equation on $mathbb{R}^{N}$
We discuss the asymptotic behaviour of solutions for the nonlocal quasilinear hyperbolic problem of Kirchhoff Type [ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+delta u_{t}=|u|^{a}u,, x in mathbb{R}^{N} ,,tgeq 0;,]with initial conditions $u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; delta geq 0$ and $(phi (x))^{-1} =g (x)$ is a positive function lying in $L^{N/2}(mathb...
متن کاملTime-periodic Solutions of Quasilinear Parabolic Differential Equations Ii. Oblique Derivative Boundary Conditions
We study boundary value problems for quasilinear parabolic equations when the initial condition is replaced by periodicity in the time variable. Our approach is to relate the theory of such problems to the classical theory for initial-boundary value problems. In the process, we generalize many previously known results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013